Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139013

RESUMO

Here, we report the in-host hepatitis E virus (HEV) quasispecies evolution in a chronically infected patient who was treated with three different regimens of ribavirin (RBV) for nearly 6 years. Sequential plasma samples were collected at different time points and subjected to RNA extraction and deep sequencing using the MiSeq Illumina platforms. Specifically, we RT-PCR amplified a single amplicon from the core region located in the open-reading frame 2 (ORF2). At the nucleotide level (genotype), our analysis showed an increase in the number of rare haplotypes and a drastic reduction in the frequency of the master (most represented) sequence during the period when the virus was found to be insensitive to RBV treatment. Contrarily, at the amino acid level (phenotype), our study revealed conservation of the amino acids, which is represented by a high prevalence of the master sequence. Our findings suggest that using mutagenic antivirals concomitant with high viral loads can lead to the selection and proliferation of a rich set of synonymous haplotypes that express the same phenotype. This can also lead to the selection and proliferation of conservative substitutions that express fitness-enhanced phenotypes. These results have important clinical implications, as they suggest that using mutagenic agents as a monotherapy treatment regimen in the absence of sufficiently effective viral inhibitors can result in diversification and proliferation of a highly diverse quasispecies resistant to further treatment. Therefore, such approaches should be avoided whenever possible.


Assuntos
Antivirais , Vírus da Hepatite E , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Vírus da Hepatite E/genética , Mutagênicos , Quase-Espécies/genética , Ribavirina/farmacologia , Ribavirina/uso terapêutico
2.
Viruses ; 15(2)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36851800

RESUMO

Epidemics and pandemics have occurred since the beginning of time, resulting in millions of deaths. Many such disease outbreaks are caused by viruses. Some viruses, particularly RNA viruses, are characterized by their high genetic variability, and this can affect certain phenotypic features: tropism, antigenicity, and susceptibility to antiviral drugs, vaccines, and the host immune response. The best strategy to face the emergence of new infectious genomes is prompt identification. However, currently available diagnostic tests are often limited for detecting new agents. High-throughput next-generation sequencing technologies based on metagenomics may be the solution to detect new infectious genomes and properly diagnose certain diseases. Metagenomic techniques enable the identification and characterization of disease-causing agents, but they require a large amount of genetic material and involve complex bioinformatic analyses. A wide variety of analytical tools can be used in the quality control and pre-processing of metagenomic data, filtering of untargeted sequences, assembly and quality control of reads, and taxonomic profiling of sequences to identify new viruses and ones that have been sequenced and uploaded to dedicated databases. Although there have been huge advances in the field of metagenomics, there is still a lack of consensus about which of the various approaches should be used for specific data analysis tasks. In this review, we provide some background on the study of viral infections, describe the contribution of metagenomics to this field, and place special emphasis on the bioinformatic tools (with their capabilities and limitations) available for use in metagenomic analyses of viral pathogens.


Assuntos
Metagenômica , Vírus , Antivirais , Biologia Computacional , Pandemias , Vírus/genética
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498981

RESUMO

The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.


Assuntos
Vírus da Hepatite E , Hepatite E , Ribavirina , Humanos , Seguimentos , Mutagênicos , Nucleotídeos , Quase-Espécies/genética , Ribavirina/uso terapêutico , SARS-CoV-2/genética , Hepatite E/tratamento farmacológico , Vírus da Hepatite E/efeitos dos fármacos , Vírus da Hepatite E/genética
4.
Sci Rep ; 12(1): 22571, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36581627

RESUMO

The SARS-CoV-2 Omicron variant emerged showing higher transmissibility and possibly higher resistance to current COVID-19 vaccines than other variants dominating the global pandemic. In March 2020 we performed a study in clinical samples, where we found that a portion of genomes in the SARS-CoV-2 viral population accumulated deletions immediately before the S1/S2 cleavage site (furin-like cleavage site, PRRAR/S) of the spike gene, generating a frameshift and appearance of a premature stop codon. The main aim of this study was to determine the frequency of defective deletions in prevalent variants from the first to sixth pandemic waves in our setting and discuss whether the differences observed might support epidemiological proposals. The complete SARS-CoV-2 spike gene was deeply studied by next-generation sequencing using the MiSeq platform. More than 90 million reads were obtained from respiratory swab specimens of 78 COVID-19 patients with mild infection caused by the predominant variants circulating in the Barcelona city area during the six pandemic waves: B.1.5, B.1.1, B.1.177, Alpha, Beta, Delta, and Omicron. The frequency of defective genomes found in variants dominating the first and second waves was similar to that seen in Omicron, but differed from the frequencies seen in the Alpha, Beta and Delta variants. The changing pattern of mutations seen in the various SARS-CoV-2 variants driving the pandemic waves over time can affect viral transmission and immune escape. Here we discuss the putative biological effects of defective deletions naturally occurring before the S1/S2 cleavage site during adaption of the virus to human infection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Códon sem Sentido
5.
Front Microbiol ; 13: 876409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722299

RESUMO

Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the main concern is whether reinfections are possible, and which are the associated risk factors. This study aims to describe the clinical and molecular characteristics of 24 sequence-confirmed reinfection SARS-CoV-2 cases over 1 year in Barcelona (Catalonia, Spain). Methods: Patients with > 45 days between two positive PCR tests regardless of symptoms and negative tests between episodes were initially considered as suspected reinfection cases from November 2020 to May 2021. Whole-genome sequencing (WGS) was performed to confirm genetic differences between consensus sequences and for phylogenetic studies based on PANGOLIN nomenclature. Reinfections were confirmed by the number of mutations, change in lineage, or epidemiological criteria. Results: From 39 reported suspected reinfection cases, complete viral genomes could be sequenced from both episodes of 24 patients, all were confirmed as true reinfections. With a median age of 44 years (interquartile range [IQR] 32-65), 66% were women and 58% were healthcare workers (HCWs). The median days between episodes were 122 (IQR 72-199), occurring one-third within 3 months. Reinfection episodes were frequently asymptomatic and less severe than primary infections. The absence of seroconversion was associated with symptomatic reinfections. Only one case was reinfected with a variant of concern (VOC). Conclusion: Severe acute respiratory syndrome coronavirus 2 reinfections can occur in a shorter time than previously reported and are mainly found in immunocompetent patients. Surveillance through WGS is useful to identify viral mutations associated with immune evasion.

6.
Viruses ; 14(3)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35337007

RESUMO

Virus pandemics have happened, are happening and will happen again. In recent decades, the rate of zoonotic viral spillover into humans has accelerated, mirroring the expansion of our global footprint and travel network, including the expansion of viral vectors and the destruction of natural spaces, bringing humans closer to wild animals. Once viral cross-species transmission to humans occurs, transmission cannot be stopped by cement walls but by developing barriers based on knowledge that can prevent or reduce the effects of any pandemic. Controlling a local transmission affecting few individuals is more efficient that confronting a community outbreak in which infections cannot be traced. Genetic detection, identification, and characterization of infectious agents using next-generation sequencing (NGS) has been proven to be a powerful tool allowing for the development of fast PCR-based molecular assays, the rapid development of vaccines based on mRNA and DNA, the identification of outbreaks, transmission dynamics and spill-over events, the detection of new variants and treatment of vaccine resistance mutations, the development of direct-acting antiviral drugs, the discovery of relevant minority variants to improve knowledge of the viral life cycle, strengths and weaknesses, the potential for becoming dominant to take appropriate preventive measures, and the discovery of new routes of viral transmission.


Assuntos
Hepatite C Crônica , Vírus , Animais , Antivirais , Sequenciamento de Nucleotídeos em Larga Escala , Pandemias
7.
Emerg Microbes Infect ; 11(1): 172-181, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34842496

RESUMO

Herein, we describe the genetic diversity of circulating SARS-CoV-2 viruses by whole-genome sequencing (WGS) in Barcelona city (Catalonia, Spain) throughout the first four pandemic waves. From weeks 11/2020-24/2021, SARS-CoV-2-positive respiratory samples were randomly selected per clinical setting (80% from primary care or 20% from the hospital), age group, and week. WGS was performed following the ARTICv3 protocol on MiSeq or NextSeq2000 Illumina platforms. Nearly complete consensus sequences were used for genetic characterization based on GISAID and PANGOLIN nomenclatures. From 2475 samples, 2166 (87%) were fully sequenced (78% from primary care and 22% from hospital settings). Multiple genetic lineages were co-circulating, but four were predominant at different periods. While B.1.5 (50.68%) and B.1.1 (32.88%) were the major lineages during the first pandemic wave, B.1.177 (66.85%) and B.1.1.7 (83.80%) were predominant during the second, third, and fourth waves, respectively. Almost all (96.4%) were carrying D614G mutation in the S protein, with additional mutations that define lineages or variants. But some mutations of concern, such as E484K from B.1.351 and P.1 lineages are currently under monitoring, together with those observed in the receptor-binding domain or N-terminal domain, such as L452R and T478K from B.1.617.2 lineage. The fact that a predominant lineage was observed in each pandemic wave suggests advantageous properties over other contemporary co-circulating variants. This genetic variability should be monitored, especially when a massive vaccination campaign is ongoing because the potential selection and emergence of novel antigenic SARS-CoV-2 strains related to immunological escapement events.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Adolescente , Adulto , Idoso , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Criança , Pré-Escolar , Biologia Computacional/métodos , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Nasofaringe/virologia , Distanciamento Físico , Prevalência , SARS-CoV-2/patogenicidade , Espanha/epidemiologia , Vacinação/métodos , Sequenciamento Completo do Genoma
8.
Emerg Microbes Infect ; 10(1): 1777-1789, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34402744

RESUMO

A common trait among RNA viruses is their high capability to acquire genetic variability due to viral and host mechanisms. Next-generation sequencing (NGS) analysis enables the deep study of the viral quasispecies in samples from infected individuals. In this study, the viral quasispecies complexity and single nucleotide polymorphisms of the SARS-CoV-2 spike gene of coronavirus disease 2019 (COVID-19) patients with mild or severe disease were investigated using next-generation sequencing (Illumina platform). SARS-CoV-2 spike variability was higher in patients with long-lasting infection. Most substitutions found were present at frequencies lower than 1%, and had an A → G or T → C pattern, consistent with variants caused by adenosine deaminase acting on RNA-1 (ADAR1). ADAR1 affected a small fraction of replicating genomes, but produced multiple, mainly non-synonymous mutations. ADAR1 editing during replication rather than the RNA-dependent RNA polymerase (nsp12) was the predominant mechanism generating SARS-CoV-2 genetic variability. However, the mutations produced are not fixed in the infected human population, suggesting that ADAR1 may have an antiviral role, whereas nsp12-induced mutations occurring in patients with high viremia and persistent infection are the main source of new SARS-CoV-2 variants.


Assuntos
COVID-19/virologia , Variação Genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Adulto , Sequência de Aminoácidos , Sequência de Bases , Feminino , Interações Hospedeiro-Patógeno , Humanos , Masculino , Pessoa de Meia-Idade , Conformação Proteica , SARS-CoV-2/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...